Abstract

To address the problem of high failure rate and low accuracy in computed tomography (CT) image edge segmentation, we proposed a CT sequence image edge segmentation optimization algorithm using improved convolution neural network. Firstly, the pattern clustering algorithm is applied to cluster the pixels with relationship in the CT sequence image space to extract the edge information of the real CT image; secondly, Euclidean distance is used to calculate similarity and measure similarity, according to the measurement results, convolution neural network (CNN) hierarchical optimization is carried out to improve the convergence ability of CNN; finally, the pixel classification of CT sequence images is carried out, and the edge segmentation of CT sequence images is optimized according to the classification results. The results show that the overall recognition rate of this method is at a high level. The training time is obviously reduced when the training times exceed 12 times, the recall rate is always about 90%, and the accuracy of image segmentation is high, which solves the problem of large failure rate and low accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.