Abstract

The inverse kinematic analysis is required in many technical applications. Due to the non linearity of the system, resolving the Inverse Kinematics (IK) for robotic system becomes more challenging problem. In this chapter, the problem of IK for medical application is faced, based on human lower limb as being the three arm robotic system depending on the physiological constaints. A system analysis is carried out specially in three dimensionnel space. The developed forward kinematic model leads to define the feasible workspace of the human leg in the considered configuration. A constructive algorithm to compute the optimal IK of robot system is outlined, based on human performance measure that incorporates a new objective function of musculoskeletal discomfort. The effectiveness of the proposed approach is tested, and the algorithmic complexity is finally discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call