Abstract

In this work, we study optimistic planning methods to solve some state-constrained optimal control problems in finite horizon. While classical methods for calculating the value function are generally based on a discretization in the state space, optimistic planning algorithms have the advantage of using adaptive discretization in the control space. These approaches are therefore very suitable for control problems where the dimension of the control variable is low and allow to deal with problems where the dimension of the state space can be very high. Our algorithms also have the advantage of providing, for given computing resources, the best control strategy whose performance is as close as possible to optimality while its corresponding trajectory comply with the state constraints up to a given accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.