Abstract
Humans continuously modulate their control strategies during walking based on their ability to anticipate disturbances. However, how people adapt and use motor plans to create stable walking in unpredictable environments is not well understood. Our purpose was to investigate how people adapt motor plans when walking in a novel and unpredictable environment. We evaluated the whole-body center of mass (COM) trajectory of participants as they performed repetitions of a discrete goal-directed walking task during which a laterally-directed force field was applied to the COM. The force field was proportional in magnitude to forward walking velocity and randomly directed towards either the right or left each trial. We hypothesized that people would adapt a control strategy to reduce the COM lateral deviations created by the unpredictable force field. In support of our hypothesis, we found that with practice the magnitude of COM lateral deviation was reduced by 28% (force field left) and 44% (force field right). Participants adapted two distinct unilateral strategies, implemented regardless of if the force field was applied to the right or to the left, that collectively created a bilateral resistance to the unpredictable force field. These strategies included an anticipatory postural adjustment to resist against forces applied to the left, and a more lateral first step to resist against forces applied to the right. In addition, during catch trials when the force field was unexpectedly removed, participants exhibited trajectories similar to baseline trials. These findings were consistent with an impedance control strategy that provides a robust resistance to unpredictable perturbations. However, we also found evidence that participants made predictive adaptations in response to their immediate experience that persisted for three trials. Due to the unpredictable nature of the force field, this predictive strategy would sometimes result in greater lateral deviations when the prediction was incorrect. The presence of these competing control strategies may have long term benefits by allowing the nervous system to identify the best overall control strategy to use in a novel environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.