Abstract

Recently, the prediction of the most efficient configuration of a vast set of devices used for mounting an optimised cloud computing services and virtual networks environments have attracted growing attention. This paper proposes a paradigm shift in modelling transmission control protocol (TCP) behaviour over time in virtual networks by using data envelopment analysis (DEA) models. Firstly, it proves that self-similarity with long-range dependency is presented differently in every network device. This study implements a novel fractal dimension concept on virtual networks for prediction, where this key index informs if the transport layer forwards services with smooth or jagged behaviour over time. Another substantial contribution is proving that virtual network devices have a distinct fractal memory, TCP bandwidth performance, and fractal dimension over time, presenting themselves as important factor for forecasting of spatiotemporal data. Thus, a continuous stepwise fractal performance evaluation framework methodology is developed as an expert system for virtual network assessment and performs a fractal analysis as a knowledge representation. In addition, due to the limitations of classical DEA models, the windows multiplicative data envelopment analysis (WMDEA) model is used to dynamically assess the fractal time series from virtual network hypervisors. For knowledge acquisition, 50 different virtual network hypervisors were appraised as decision-making units (DMU). Finally, this expert system also acts as a math hypervisor capable of determining the correct fractal pattern to follow when delivering TCP services in an optimised virtual network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.