Abstract

In last years, enhancing the vehicular traffic flow becomes a mandatory task to minimize the impact of polluting emissions and unsustainable fuel consumption in our cities. Smart Mobility optimisation emerges then, with the goal of improving the traffic management in the city. With this aim, we propose in this paper an optimisation strategy based on swarm intelligence to find efficient cycle programs for traffic lights deployed in large urban areas. In concrete, in this work we focus on the improvement of the traffic flow with the global purpose of reducing contaminant emissions (CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> ) and fuel consumption in the analyzed areas. For the sake of standardization, we follow European Union reference framework for traffic emissions, called HandBook Emission FActors (HBEFA). As a case study, we have concentrated in two extensive urban areas in the cities of Malaga and Seville (in Spain). After several comparisons between different optimisation techniques (Differential Evolution and Random Search), as well as other solutions provided by experts, our proposal is shown to obtain significant reductions of fuel consumption and gas emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.