Abstract
The problem of optimising the threshold levels in multilevel threshold system subject to multiplicative Gaussian and uniform noise is considered. Similar to previous results for additive noise, we find a bifurcation phenomenon in the optimal threshold values, as the noise intensity changes. This occurs when the number of threshold units is greater than one. We also study the optimal thresholds for combined additive and multiplicative Gaussian noise, and find that all threshold levels need to be identical to optimise the system when the additive noise intensity is a constant. However, this identical value is not equal to the signal mean, unlike the case of additive noise. When the multiplicative noise intensity is instead held constant, the optimal threshold levels are not all identical for small additive noise intensity but are all equal to zero for large additive noise intensity. The model and our results are potentially relevant for sensor network design and understanding neurobiological sensory neurons such as in the peripheral auditory system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.