Abstract

Magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has been hailed as the future of electrophysiological recordings from the human brain. In this work, we investigate how the dimensions of the sensing volume (the vapour cell) affect the performance of both a single OPM-MEG sensor and a multi-sensor OPM-MEG system. We consider a realistic noise model that accounts for background brain activity and residual noise. By using source reconstruction metrics such as localization accuracy and time-course reconstruction accuracy, we demonstrate that the best overall sensitivity and reconstruction accuracy are achieved with cells that are significantly longer and wider that those of the majority of current commercial OPM sensors. Our work provides useful tools to optimise the cell dimensions of OPM sensors in a wide range of environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.