Abstract
The cyclic electron flux (CEF) around photosystem I (PSI) was discovered in isolated chloroplasts more than six decades ago, but its quantification has been hampered by the absence of net formation of a product or net consumption of a substrate. We estimated in vivo CEF in leaves as the difference (ΔFlux) between the total electron flux through PSI (ETR1) measured by a near infrared signal, and the linear electron flux through both photosystems by optimised measurement of chlorophyll a fluorescence (LEFfl). Chlorophyll fluorescence was excited by modulated green light from a light-emitting diode at an optimal average irradiance, and the fluorescence was detected at wavelengths >710nm. In this way, LEFfl matched the gross rate of oxygen evolution multiplied by 4 (LEFO2) in broad-spectrum white actinic irradiance up to half (spinach, poplar and rice) or one third (cotton) of full sunlight irradiance. This technique of estimating CEF can be applied to leaves attached to a plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.