Abstract

The disposal of feacal matter from Urine Diversion Dry Toilets is a significant challenge due to limited land availability, possible underground water contamination, and the risk of spreading diseases. The collected faecal matter can be fed to Black Soldier Fly Larvae to produce protein-rich larvae used as animal feed. The disposal of the leftover waste (BSFL residue) is still a problem due to the risk of residual pathogen contamination. The BSFL residue contains residual plant nutrients and can be further processed into biochar. Faecal matter biochar offers an exciting value proposition where the pyrolysis process guarantees a 100% pathogen elimination. It also results in significant waste reduction in transport, storage weight, and volume. A preliminary study was conducted to (i) optimise pyrolysis conditions (optimal temperature treatment and residence time) for biochar production using residue obtained after faecal matter from urine diversion dry toilets was fed to black soldier fly larvae as feedstock; and (ii) determine the physicochemical and morphological characteristics of biochar produced. The residue was pyrolysed at 300, 400, and 500 °C and characterised for chemical, biological and physical characteristics. Surface area (6.61 m2 g−1), pore size, and C: N (9.28) ratio increased at 500 °C for 30 min. Exchangeable bases, (Calcium) Ca, (Magnesium) Mg, (Potassium) K, and (Sodium) Na increased with increasing pyrolysis temperature. The increase in basic cations resulted in an increase in pH from 6.7 in the residue to 9.8 in biochar pyrolysed at 500 °C. Biochar pyrolysed at 500 °C can therefore be used to improve acidic soils. Phosphorus increased with increasing pyrolysis temperature to 3 148 mg kg−1 at 500 °C. Biochar produced at 500 °C for 30 min had desirable characteristics: surface area, exchangeable bases, and pH. Also, biochar can be used as a phosphorus source with potential for crop production, although an external nitrogen source is needed to meet crop nutrient requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.