Abstract

Low-temperature additive manufacturing of magnesium (Mg) alloy implants is considered a promising technique for biomedical applications due to Mg's inherent biocompatibility and 3D printing's capability for patient-specific design. This study explores the influence of powder volume content, size, and morphology on the mechanical properties and viscosity of polylactic acid (PLA) matrix composite filaments containing in-house-produced magnesium-calcium (Mg-Ca) particles, with a focus on their application towards low-temperature additive manufacturing. We investigated the effects of varying the Mg-Ca particle content in a PLA matrix, revealing a direct correlation between volume content and bending strength. Particle size analysis demonstrated that smaller particles (D50: 57 μm) achieved a bending strength of 63.7 MPa, whereas larger particles (D50: 105 μm) exhibited 49.6 MPa at 20 vol.%. Morphologically, the filament containing spherical particles at 20 vol.% showed a bending strength that was 11.5 MPa higher than that of the filament with irregular particles. These findings highlight the critical role of particle content, size, and shape in determining the mechanical and rheological properties of Mg-Ca/PLA composite filaments for use in material extrusion additive manufacturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.