Abstract

Previous investigations indicated that a flat-walled, multi-layered anechoic lining system, with an overall thickness slightly less than a quarter of a wavelength, could be used to achieve a required cut-off frequency. However, the work proved to be tedious and time consuming because of the numerous trial-and-error measurements involved. On the other hand, the successful application of a method of calculating the overall acoustic impedance of multi-layered absorbing systems has indicated that the design of multi-layered absorbing systems can be carried out on a desktop computer. In the present work, a MATLAB genetic and evolutionary algorithm toolbox is implemented as the optimiser to aid and speed up the design process. The optimisation results indicate that a three-layered lining system can achieve results comparable with quality wedge-type anechoic linings with overall thickness slightly less than a sixth of a wavelength at the 100 Hz cut-off frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.