Abstract
Abstract Many Feed-in Tariff designs exist. This paper provides a framework to determine the optimal design choice through an efficient allocation of market price risk. Feed-in Tariffs (FiTs) incentivise the deployment of renewable energy technologies by subsidising remuneration and transferring market price risk from investors, through policymakers, to a counterparty. This counterparty is often the electricity consumer. Using Stackelberg game theory, we contextualise the application of different FiT policy designs that efficiently divide market price risk between investors and consumers, conditional on risk preferences and market conditions. Explicit consideration of policymaker/consumer risk burden has not been incorporated in FiT analyses to date. We present a simulation-based modelling framework to carry this out. Through an Irish case study, we find that commonly employed flat-rate FiTs are only optimal when policymaker risk aversion is extremely low whilst constant premium policies are only optimal when investor risk aversion is extremely low. When both policymakers and investors are risk averse, an intermediate division of risk is optimal. We provide evidence to suggest that the contextual application of many FiT structures is suboptimal, assuming both investors and policymakers are at least moderately risk averse. Efficient risk allocation in FiT design choice will be of increasing policy importance as renewables deployment grows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.