Abstract
BackgroundRice straw and husk are globally significant sources of cellulose-rich biomass and there is great interest in converting them to bioethanol. However, rice husk is reportedly much more recalcitrant than rice straw and produces larger quantities of fermentation inhibitors. The aim of this study was to explore the underlying differences between rice straw and rice husk with reference to the composition of the pre-treatment liquors and their impacts on saccharification and fermentation. This has been carried out by developing quantitative NMR screening methods.ResultsAir-dried rice husk and rice straw from the same cultivar were used as substrates. Carbohydrate compositions were similar, whereas lignin contents differed significantly (husk: 35.3% w/w of raw material; straw 22.1% w/w of raw material). Substrates were hydrothermally pre-treated with high-pressure microwave processing across a wide range of severities. 25 compounds were identified from the liquors of both pre-treated rice husk and rice straw. However, the quantities of compounds differed between the two substrates. Fermentation inhibitors such as 5-HMF and 2-FA were highest in husk liquors, and formic acid was higher in straw liquors. At a pre-treatment severity of 3.65, twice as much ethanol was produced from rice straw (14.22% dry weight of substrate) compared with the yield from rice husk (7.55% dry weight of substrate). Above severities of 5, fermentation was inhibited in both straw and husk. In addition to inhibitors, high levels of cellulase-inhibiting xylo-oligomers and xylose were found and at much higher concentrations in rice husk liquor. At low severities, organic acids and related intracellular metabolites were released into the liquor.ConclusionsRice husk recalcitrance to saccharification is probably due to the much higher levels of lignin and, from other studies, likely high levels of silica. Therefore, if highly polluting chemical pre-treatments and multi-step biorefining processes are to be avoided, rice husk may need to be improved through selective breeding strategies, although more careful control of pre-treatment may be sufficient to reduce the levels of fermentation inhibitors, e.g. through steam explosion-induced volatilisation. For rice straw, pre-treating at severities of between 3.65 and 4.25 would give a glucose yield of between 37.5 and 40% (w/DW, dry weight of the substrate) close to the theoretical yield of 44.1% w/DW, and an insignificant yield of total inhibitors.
Highlights
Rice straw and husk are globally significant sources of cellulose-rich biomass and there is great interest in converting them to bioethanol
The contents of compounds have been calculated to percentage based on the dry weight of rice husk and rice straw
[23], we showed that washing pre-treated rice straw prior to Simultaneous saccharification and fermentations (SSF) reduced such severityrelated decline in SSF efficiency and concluded that this was due to the removal of fermentation inhibitors
Summary
Rice straw and husk are globally significant sources of cellulose-rich biomass and there is great interest in converting them to bioethanol. The aim of this study was to explore the underlying differences between rice straw and rice husk with reference to the composition of the pre-treatment liquors and their impacts on saccharification and fermentation. This has been carried out by developing quantitative NMR screening methods. Cellulose is the most abundant source of glucose, and is found in lignocellulosic biomass and wastes including agricultural residues such as forestry residues and pulping wastes, cereal straws, and threshing husks, as well as food processing coproducts such as brewers spent grain [5, 6]. As Rajaram and Varma [7] reported in 1990, there were about 2900 million tonnes of lignocellulosic waste from cereal crops, 160 million tonnes from pulse crops, 14 million tonnes from oilseed crops and 540 million tonnes from plantation crops
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.