Abstract

Airborne platforms offer great opportunities for atmospheric research into the upper atmospheric layers, and they range from large and fully-equipped Atmospheric Research Aircraft (ARA) to small Unmanned Aerial Vehicles (UAVs) carrying only a few instruments on-board. Such mobile platforms permit to sample the atmosphere from a unique perspective and can be used to obtain better insight on processes, to map the atmosphere in three dimensions, to validate models and spaceborne sensors, and to assist decision-making during emergencies (e.g. volcanic eruptions). We have had the chance to work closely with the Facility for Airborne Atmospheric Measurements (FAAM) ARA and of developing research closely with the Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute. In this presentation we will discuss some typical challenges of airborne research and how campaigns can be optimised. All platforms are obviously different, and teams work in different ways, but several aspects of the campaign optimisation process are common. Teamwork and communications are important requisites for success. Moreover, flight planning is a complex process, involving the use of several (often ad hoc) products providing forecasts and situational awareness, but also a knowledge of the operational constrains and a continuous negotiation between the scientific, logistics and technical teams. A thorough preparation is a key to success, and is practiced both before and during a campaign. Unpredicted situations will systematically occur, and they require having a clear prospect of the scientific objectives, the operational processes and limits, and having done a prior “homework” to understand the preferred options. Decisions have to be taken at several stages: when planning a campaign, between flights during a campaign, and whilst a flight is being carried out. Each decision is a compromise between scientific objectives and operational constrains and it is vital to be able to make the right choices. The ultimate goal of this process is to have the aircraft in the right place at the right time, as many times as possible, but without forcing excessively onto the operational limits. For a scientist, learning to understand the technical jargon (e.g. familiarity with altitudes in feet, name of airborne manoeuvres, etc) and the operational processes (e.g. how air traffic control works, how long in advance decisions need to be made, etc) is as important as understanding the scientific objectives of the campaign. To concentrate on the decision-making process rather than on how to locate information, a good prior organisation is required. A “dry run” can help in practicing and simulating the campaign in advance, with uncertainties and decisions to be taken, so as to test the best compromises and solidify the teamwork. Ultimately, airborne observations are sporadic, and some of them will be intrinsically inefficient because precious flight time can be lost during transits, when instruments fail, or when the targeted atmospheric conditions do not occur. The optimisation process aims to improve the overall efficiency and transform the uncertainties and unforeseen circumstances into a success.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.