Abstract

BackgroundTo maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. As a result methods are nowadays available for EU-authorised genetically modified organisms (GMOs), but only to a limited extent for EU-non-authorised GMOs (NAGs). In the last decade the diversity of genetically modified (GM) ingredients in food and feed has increased significantly. As a result of this increase GMO laboratories currently need to apply many different methods to establish to potential presence of NAGs in raw materials and complex derived products.ResultsIn this paper we present an innovative method for detecting (approved) GMOs as well as the potential presence of NAGs in complex DNA samples containing different crop species. An optimised protocol has been developed for padlock probe ligation in combination with microarray detection (PPLMD) that can easily be scaled up. Linear padlock probes targeted against GMO-events, -elements and -species have been developed that can hybridise to their genomic target DNA and are visualised using microarray hybridisation.In a tenplex PPLMD experiment, different genomic targets in Roundup-Ready soya, MON1445 cotton and Bt176 maize were detected down to at least 1%. In single experiments, the targets were detected down to 0.1%, i.e. comparable to standard qPCR.ConclusionCompared to currently available methods this is a significant step forward towards multiplex detection in complex raw materials and derived products. It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify NAGs that would otherwise remain undetected.

Highlights

  • To maintain EU genetically modified organisms (GMOs) regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety

  • It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify nonauthorised GMOs (NAGs) that would otherwise remain undetected

  • In recent years there have been a number of incidents in which not EU-approved GMO varieties were present in shipments imported into the EU

Read more

Summary

Introduction

To maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. In order to maintain current EU GMO regulations it is necessary to check for the presence of NAGs on the basis of available methods for GMO-events, -elements (or -constructs i.e. bridging elements) and -species according to the scheme as presented, leading to an increasing number of analyses per sample and shipment. This scheme uses available information on approved GMO crop varieties as a basis for the detection of the presence of authorised GMOs, NAGs and possibly even unknown GMO varieties. Multiplex methods need to be developed to cover diversification of GMOs, both authorized and NAGs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.