Abstract

We provide a thorough treatment of one-class classification with hyperparameter optimisation for five data descriptors: Support Vector Machine (SVM), Nearest Neighbour Distance (NND), Localised Nearest Neighbour Distance (LNND), Local Outlier Factor (LOF) and Average Localised Proximity (ALP). The hyperparameters of SVM and LOF have to be optimised through cross-validation, while NND, LNND and ALP allow an efficient form of leave-one-out validation and the reuse of a single nearest-neighbour query. We experimentally evaluate the effect of hyperparameter optimisation with 246 classification problems drawn from 50 datasets. From a selection of optimisation algorithms, the recent Malherbe-Powell proposal optimises the hyperparameters of all data descriptors most efficiently. We calculate the increase in test AUROC and the amount of overfitting as a function of the number of hyperparameter evaluations. After 50 evaluations, ALP and SVM significantly outperform LOF, NND and LNND, and LOF and NND outperform LNND. The performance of ALP and SVM is comparable, but ALP can be optimised more efficiently so constitutes a good default choice. Alternatively, using validation AUROC as a selection criterion between ALP or SVM gives the best overall result, and NND is the least computationally demanding option. We thus end up with a clear trade-off between three choices, allowing practitioners to make an informed decision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call