Abstract
Poly (ether sulfone) (PES) is a candidate for use as a scintillation material in radiation detection. Its characteristics, such as its emission spectrum and its effective refractive index (based on the emission spectrum), directly affect the propagation of light generated to external photodetectors. It is also important to examine the presence of background radiation sources in manufactured PES. Here, we optimise the optical coupling and surface treatment of the PES, and characterise its background. Optical grease was used to enhance the optical coupling between the PES and the photodetector; absorption by the grease of short-wavelength light emitted from PES was negligible. Diffuse reflection induced by surface roughening increased the light yield for PES, despite the high effective refractive index. Background radiation derived from the PES sample and its impurities was negligible above the ambient, natural level. Overall, these results serve to optimise the mounting conditions for PES in radiation detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.