Abstract
ABSTRACT This paper introduces and tackles a special performance hazard in Hardware Transactional Memory (HTM): false abortion. False abortion causes many unnecessary transaction abortions in HTM and can greatly impact the performance, making HTM not that useful when it is adopted as a fast path for Software Transactional Memory. By introducing a new memory allocator design, we are able to put objects that are likely to be accessed together from different threads into different cache lines and thus avoid conflicts of hardware transactions in different threads. Experiments show that our method can reduce 47% of transaction abortion and achieve a speedup of up to 1.67× (averagely 22%), yet only consume 14% more memory, showing great potential to enhance current HTM technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Parallel, Emergent and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.