Abstract

In the expanding field of robotic prosthetics, surface electromyography (sEMG) signals can be decoded to seamlessly control a robotic prosthesis to perform the desired gesture. It is essential to create a pipeline, which can acquire, process, and accurately classify sEMG signals in order to replicate the desired hand gesture in near real-time and in a reliable manner. In this study, an optimised pipeline is proposed. This pipeline encompasses the main stages of sEMG signal processing and hand gesture classification and implements a sliding window approach, which is the main focus of the optimisation. In this study, a range of different parameters and modelling approaches are evaluated. The main contributions of this work are a robust and extensive analysis of sliding window parameter selection and an optimised pipeline that could be implemented in practice with minimal overheads. The optimum pipeline is efficient and achieves accurate prediction of hand gestures with an uninterrupted processing pipeline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call