Abstract

After heavy rainfall, sewer overflow spills to receiving water bodies cause serious concern for the environment, aesthetics and public health. To overcome these problems this study investigated a new self-cleansing sewer overflow screening device. The device has a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants. To design an efficient screening device a numerical computational fluid dynamic (CFD) model was used. A plausibility check of the CFD model was done using a one-dimensional analytical model. Results showed that an inlet parallel to the weir ensured better self-cleansing than an inlet perpendicular to the weir. Perforations should be at the bottom of the weir to get increased velocity and shear stress to create a favourable self-cleaning effect of the screening device. Increasing inlet length from 0.3 to 1.5 m reduced wave reflection up to 10%, which increased flow uniformity downstream and improved self-cleansing effect. The orientation of the ogee weir with the rectangular tank was found most uniform with a 1:3 (horizontal:vertical) slope. These results will help to maximise functional efficiency of the new sewer overflow screening device. Otherwise it would be too expensive to alter after installation and at times difficult to customise accordingly to existing urban drainage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.