Abstract

The goal of this work is to propose a novel approach to function optimisation by evolutionary techniques, in particular, real-coded genetic algorithms. A new genetic crossover operator, suitable for real codification, has been designed. This operator is called morphological crossover as it is based on mathematical morphology theory. The morphological crossover includes a new genetic diversity measure that has low computational cost. This operator is presented along with the resolution of a set of optimisation problems, including neural network training. The results are compared to other optimisation approaches as gradient descent methods or binary and real-coded genetic algorithms using different crossover operators. These tests show that the properties exhibited by the proposed operator when using real-coded genetic algorithms give higher convergence speed and less probability of being trapped in a local optimum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.