Abstract

The present study was undertaken investigate and optimise the possibility of xanthan gum production by Xanthomonas campestris NRRL B-1459 in batch experiments on date palm juice by-products. Using an experimental Response Surface Methodology complemented with a Central Composite Orthogonal Design, three major independent variables (date juice carbon source, nitrogen source and temperature) were evaluated for their individual and interactive effects on biomass and xanthan gum production. The optimal conditions selected were: 84.68 g/l for carbon source, 2.7 g/l for nitrogen source, and 30.1 °C for temperature. The experimental value obtained for xanthan production under these conditions was about 43.35 g/l, which was close to the 42.96 g/l value predicted by the model. Higher yields of biomass production could be obtained at 46.68 g/l for carbon source, 4.58 g/l for nitrogen source and 30 °C for temperature. The maximum value obtained for biomass production was 3.35 g/l, which was higher than the 2.98 g/l value predicted by the model. The xanthan formed was subjected to HPLC and TLC analyses and its molecular weight as well as pyruvate content were identified. The findings indicated that this polysaccharide contained glucose, glucoronic acid and mannose. Overall, the date palm juice by-products presented in the current study seem to exhibit promising properties that can open new pathways for the production of efficient and cost-effective xanthan gum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call