Abstract
When machining complex geometries on five-axis machining centres, the orientation and positioning of the workpiece in the machine workspace are generally chosen arbitrarily by the operator from the Computer-Aided Manufacturing software. Nevertheless, these two factors have considerable influence on the machining time. The present article firstly studies the choice of workpiece orientation. Relying on analysis of the machine’s kinematic behaviour, orientations of the workpiece in the machine workspace are proposed minimising the overall distance travelled by the rotary axes. Secondly, choice of workpiece positioning in translation is studied. To this purpose, the work volume in five-axis machining is identified so as to avoid overshooting the machine travels when the program is executed. The optimum positioning is chosen to minimise the overall distance covered by the machine’s axes of translation. Finally, the proposed method provides for a workpiece setup to be adopted that minimises the distances covered by the machine axes. This leads to reduced machining time with concomitant gains in productivity and greater respect for the cutter/workpiece relative feed rate for enhanced quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.