Abstract
The choice of correct inspection intervals poses a serious challenge to industries that utilise physical assets. Too short an interval increases operational cost and waste production time while too long an interval increases the likelihood of unexpected asset failures. Failure Modes and Effect Criticality Analysis (FMECA) is a technique that permits qualitative evaluation of assets' functions to predict critical failure modes and the resultant consequences to determine appropriate maintenance tasks for the assets. The Delay-Time Maintenance Model (DTMM) is a quantitative maintenance optimisation technique that examines equipment failure patterns by taking into account failure consequences, inspection time and cost in order to determine optimum inspection interval. In this paper, a hybrid of FMECA and DTMM is used to assess the failure characteristics of a selected subsystems of a chosen wind turbine. Optimal inspection intervals for critical subsystems of the wind turbine are determined to minimise its total life-cycle cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.