Abstract

A number of equations are available for predicting the output of machining processes. These equations are most commonly used for the prediction of surface roughness after tooling. Surface roughness can be influenced by many factors, including cutting parameters, tool geometry and environmental factors such as the coolant used. It is difficult to create a universally applicable equation for all machining because of the variations in different materials' behaviours (e.g. metal, wood, plastic, composite, ceramic). There are also many differences between the various types of machining process such as the machining tools, rotational or translational movements, cutting speeds, cutting methods, etc. The large number of parameters required would make such an equation unusable, and difficult to apply quickly. The goal is thus to create a simple formulation with three or four inputs to predict the final surface roughness of the machined part within adequate tolerances. The two main equations used for this purpose are the Bauer and Brammertz formulas, both of which need to be optimised for a given material. In this paper, the turning of thermoplastics was investigated, with the aim of tuning the Bauer formula for use with thermoplastics. Eleven different plastics were used to develop a material-dependent surface roughness equation. Only new tooling inserts were used to eliminate the effects of tool wear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.