Abstract

Abstract In this paper, the flux error-related weighting factor (WF) of the predictive torque control (PTC) strategy for induction motor (IM) control is optimised by a standard genetic algorithm (SGA) through speed errors only and multi-objective genetic algorithm (MOGA) through torque and flux errors. This paper compares the performances of both optimisation methods. Compared to MOGA, SGA offers a straightforward way to select WF and does not need a decision-making method to choose a final solution. But MOGA considers the given problem in a multi-objective way and directly optimises the control objectives of the PTC strate-gy. Comparisons are made over the flux and torque ripples, total harmonic distortion of stator phase current, and average switching frequency for different operating conditions. Simulation results show that both methods choose a close WF value. Consequently, SGA stands out in the optimisation of the PTC strategy with its simple structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.