Abstract

The ultimate signal-to-noise performance of infrared photodetectors is limited by the statistical nature of the thermal generation and recombination of charge carriers. Band-to-band Auger processes dominate in a high quality InGaAs used for photovoltaic detector operating at room temperature. The performance of devices operating in the 2–3.4μm spectral range has been analyzed theoretically. Homo- and heterostructure devices have been considered. The use of n+np+ (or n+pp+) with heavily doped regions has been found to prevent the recombination of photogenerated carriers at contacts, but the bulk thermal generation in the heavily doped regions will significantly reduce the performance of the devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.