Abstract

Optimised extraction methods are required to better understand the impact of volatile compounds on the physical and organoleptic attributes of baked confectionary products (cakes, etc.). This is especially relevant with an increased focus on the reformulation of such products to aid in the reduction of diet-related chronic diseases. Headspace solid-phase microextraction (HS-SPME) has become one of the most widely used extraction techniques for volatile profiling of foods and beverages, mainly because it is very automatable, has a high sample throughput, is solvent-free and multiple fibre phases are available to target a wide range of volatile organic compounds. This study used response surface methodology to optimise HS-SPME parameters for the extraction of volatiles in baked confectionary products. After HS-SPME fibre selection, a central composite design was used to evaluate the effect of incubation time, extraction time and extraction temperature on 18 selected volatile compounds, representative of key volatiles in baked confectionary products, using a sponge cake crumb as the matrix. The most suitable fibre was the divinylbenzene/carboxen/polydimethylsiloxane. The results demonstrated that the final reduced models significantly (p < 0.0001) fitted the responses of 18 selected volatile compounds, with R2 values ranging from 0.8178 to 0.9871. The optimal conditions derived were an incubation time of 5 min, extraction time of 60 min and an extraction temperature of 60 °C. These were subsequently evaluated in three baked confectionary products, highlighting the effectiveness of this approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call