Abstract
Bio-inspired optimisation algorithms have recently attracted much attention in the control community. Most of these algorithms mimic particular behaviours of some animal species in such a way that allows solving optimisation problems. The present paper aims at applying three metaheuristic methods for optimising fuzzy logic controllers used for quadrotor attitude stabilisation. The investigated methods are particle swarm optimisation (PSO), BAT algorithm and cuckoo search (CS). These methods are applied to find the best output distribution of singleton membership functions of the fuzzy controllers. The quadrotor control requires measured responses, therefore, three objective functions are considered: integral squared error, integral time-weighted absolute error and integral time-squared error. These metrics allow performance comparison of the controllers in terms of tracking errors and speed of convergence. The simulation results indicate that BAT algorithm demonstrated higher performance than both PSO and CS. Furthermore, BAT algorithm is capable of offering 50% less computation time than CS and 10% less time than PSO. In terms of fitness, BAT algorithm achieved an average of 5% better fitness than PSO and 15% better than CS. According to these results, the BAT-based fuzzy controller exhibits superior performance compared with other algorithms to stabilise the quadrotor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.