Abstract
In contrast to traditional job-shop scheduling problems, various complex constraints must be considered in distributed manufacturing environments; therefore, developing a novel scheduling solution is necessary. This paper proposes a hybrid genetic algorithm (HGA) for solving the distributed and flexible job-shop scheduling problem (DFJSP). Compared with previous studies on HGAs, the HGA approach proposed in this study uses the Taguchi method to optimize the parameters of a genetic algorithm (GA). Furthermore, a novel encoding mechanism is proposed to solve invalid job assignments, where a GA is employed to solve complex flexible job-shop scheduling problems (FJSPs). In addition, various crossover and mutation operators are adopted for increasing the probability of finding the optimal solution and diversity of chromosomes and for refining a makespan solution. To evaluate the performance of the proposed approach, three classic DFJSP benchmarks and three virtual DFJSPs were adapted from classical FJSP benchmarks. The experimental results indicate that the proposed approach is considerably robust, outperforming previous algorithms after 50 runs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.