Abstract

The microstructure evolution in the as-cast pure Cu and Cu-(1.0–3.0)Fe-0.5Co and Cu-1.5Fe-0.1Sn (wt. %) alloys was characterised in the previous work. Herein, the plastic deformation characteristics were examined by uniaxial tensile tests at room temperature. Along with the microstructure evolution, the yield strength increased with increasing Fe content and reached a peak value at 1.5 wt % Fe, but thereafter decreased with the further addition of Fe in the Cu–Fe–Co alloys. Nevertheless, the tensile strength and elongation synchronously improve with increasing Fe content. In particular, the Cu-1.5Fe-0.1Sn alloy achieved the optimal strength–ductility combination. In terms of the strengthening mechanism, the (Fe, Co)- or (Fe, Sn)-doped copper encouraged impediment, trapping, and storage of dislocations by the iron-rich nanoparticles and grain boundaries, which enhanced the strength and sustained the work hardening and elongation. The evolution of mechanical properties under an alloying effect was quantitatively described by the strengthening models. The results indicate that the optimum balance between strength and ductility was achieved by designing a microstructure containing fine grains, intragranular smaller spherical nanoparticles, and a minor solute element with higher misfit and higher growth restriction effect. The necessities for engineering a microstructure to achieve simultaneously strong and ductile bulk metals were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.