Abstract
Abstract Reducing the machining energy consumption (MEC) of machine tools for turning operations is significant to promote sustainable manufacturing. It has been approved that selecting optimal cutting (turning) parameters is an effective approach to reduce the cutting energy consumption (CEC) within the MEC. However, the potentiality for this approach to reduce the non-cutting energy consumption (NCEC) has not received sufficient attentions. Especially, the energy consumed for spindle rotation change (SRCE) was neglected. Thus, this article aims at developing an integrated MEC model with NCEC and SRCE considered. Then, Simulated Annealing (SA) is employed to find the optimal spindle rotation speed (SRS) and feed rate which result in the minimum MEC. A case study is conducted, where five parts with different cutting lengths are processed on a lathe. The experiment results show that SA can obtain the global optimum in a short computation time when the step sizes for SRS and feed rate are 0.1 and 0.001, respectively. The optimal solution achieves a 19.28% MEC reduction. Finally, the relation between the part length and the optimal SRS is analysed, and the consequence of MEC minimisation on machining time is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.