Abstract

An automobile radiator is a component of an automotive cooling system which plays a major role in transferring the heat from the engine parts to the environment through its complex working system. Heat losses through the radiator and the tailpipe add up to 58 to 62 percent of the total losses. Insufficient heat dissipation can result in the overheating of the engine, which leads to the breakdown of the lubricating oil, corrosion and metal weakening of engine parts, and significant wear between engine parts. To minimize the stress on the engine as a result of heat generation, automotive radiators must be designed to be more effective while still maintaining high level of heat transfer within components. This leads to the increased demand of power packed radiators, which can dissipate maximum amount of heat for any given space. In this paper we have designed and analyzed the performance of radiators by comparing linear tube radiator and two helical tube radiators as coolant inside radiator follows triple pass flow pattern. The modeling is done using CATIA. The fluid flow analysis is done with ANSYS FLUENT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.