Abstract
AbstractA laboratory‐scale anaerobic/anoxic/oxic reactor system was used to treat synthetic brewery wastewater for 1 year. The objectives were to enhance denitrifying phosphorus removal, improve biological nutrient removal and reduce operating costs. Three operational strategies were tested: (1) controlling nitrate recirculation to stimulate the growth of denitrifying phosphate‐accumulating organisms; (2) adjusting the volume ratio of the anaerobic/anoxic/oxic zones to enhance anoxic P uptake; (3) bypassing a part of the influent flow into the anoxic zone to maximise anoxic P uptake and denitrification. The results showed that not only was anoxic P uptake enhanced but also energy consumption for aeration could be reduced when the anoxic effluent NO3−‐N concentration was controlled between 1 and 3 mg L−1. The optimal volume ratio of the anaerobic/anoxic/aerobic zones in this system was found to be 1:1:2. The optimal bypass flow ratio was 0.32. The results indicated that the optimal strategies could improve treatment performance and reduce operational costs, but there was still a challenge to treat wastewater with low C/N ratio. Copyright © 2006 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Technology & Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.