Abstract

ABSTRACTTransition metal-oxide interfaces suffer within their thermodynamic stability range Gibbs' adsorption and show important changes in chemical composition with oxygen activity. As a consequence, specific free interfacial energy and adhesion energy also vary with oxygen activity. Adhesion at a given non-reactive transition metal-oxide interface can then be optimised by establishing the proper oxygen activity during processing or by a post-treatment at the interface.In the present work, the approach of Gibbs' adsorption is extended to crystalline, anisotropic (special) transition metal-oxide interfaces. It is demonstrated that interfacial energy varies with oxygen activity. The variation in energy is studied for different adsorption energies, temperatures and interfacial planes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call