Abstract

In this work, a headspace-solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS) method for multielemental speciation of organometallic compounds of mercury, lead and tin in water samples was upgraded by the introduction of tandem mass spectrometry (MS/MS) as detection technique. The analytical method is based on the ethylation with NaBEt 4 and simultaneous headspace-solid-phase micro-extraction of the derivative compounds followed by GC–MS/MS analysis. The main experimental parameters influencing the extraction efficiency such as derivatisation time, extraction time and extraction temperature were optimized. The overall optimum extraction conditions were the following: a 50 μm/30 μm divinyl-benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) SPME fibre, 150 min derivatisation time, 15 min extraction time, sample agitation at 250 rpm and 40 °C extraction temperature. The analytical characteristics of the HS-SPME method combined with GC–MS and GC–MS/MS were evaluated. The combination of both techniques HS-SPME and GC–MS/MS allowed to attain lower limits of detection (4–33 ng l −1) than those obtained by HS-SPME–GC–MS (17–45 ng l −1). The proposed method presented good linear regression coefficients ( r 2 > 0.9970) and repeatability (4.8–21.0%) for all the compounds under study. The accuracy of the method measured as the average percentage recovery of the compounds in spiked river water and seawater samples was higher than 80% for all the compounds studied, except for monobutyltin in the river water sample. A study of the uncertainty associated with the analytical results was also carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call