Abstract
Production of dimethyl sulfide (DMS) from marine samples is often quantified using gas chromatography techniques. Typically, these are labour intensive and have a slow sample turnover rate. Here we demonstrate the use of a portable fast DMS sensor (FDS) that utilises the chemiluminescent reaction of DMS and ozone to measure DMS production in aqueous samples, with a maximum frequency of 10 Hz. We have developed a protocol for quantifying DMS production that removes potential signal interference from other biogenic trace gases such as isoprene (2-methyl-1,3-butadiene) and hydrogen sulfide. The detection limit was 0.89 pM (0.02 ppbv) when using a DMS standard gas mixture. The lowest DMS production rates quantified with the FDS and verified using conventional gas chromatography with flame photometric detection (GC-FPD) were around 0.01 nmol min−1. There was a strong correlation in DMS production when comparing the FDS and GC-FPD techniques with a range of marine samples (e.g., r2 = 0.94 for Emiliania huxleyi). However, the combined dataset showed the FDS measured 22% higher DMS production than the GC-FPD, with the differences in rates likely due to interfering gases, for example hydrogen sulfide and isoprene. This possible overestimation of DMS production is smaller than the two-fold difference in DMS production between day and night samples from a culture of E. huxleyi. The response time of the instrument to changes in DMS production is method dependent (e.g., geometry of incubation vessel, bubble size) and was approximately 4 min under our conditions when using a culture of E.huxleyi (800 ml) with aeration at 100 ml min−1. We suggest the FDS can reduce sample handling, is suitable for short- and long-term measurements of DMS production in algal cultures, and will widen the range of DMS research in marine environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.