Abstract
Abstract The paper deals with the optimal design and analysis of quarter car vehicle suspension system based on the theory of linear optimal control because Linear Quadratic Gaussian (LQG) offers the possibility to emphasize quantifiable issues like ride comfort or road holding very easily by altering the weighting factor of a quadratic criterion. The theory used assumes that the plant (vehicle model + road unevenness model) is excited by white noise with Gaussian distribution. The term quadratic is related to a quadratic goal function. The goal function is chosen to provide the possibility to emphasize three main objectives of vehicle suspensions; ride comfort, suspension travel and road holding. Minimization of this quadratic goal function results in a law of feedback control. For optimal designs are used the optimal parameters which have been derived by comparison of two optimisation algorithms: Sequential Quadratic Program (SQP) and Genetic Algorithms (GA's), for a five chosen design parameters. LQG control is considered to control active suspension for the optimal parameters derived by GA's, while the main focus is to minimise the vertical vehicle body acceleration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Strojnícky časopis - Journal of Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.