Abstract

Reconstructed mass variables, such as $M_2$, $M_{2C}$, $M_T^\star$, and $M_{T2}^W$, play an essential role in searches for new physics at hadron colliders. The calculation of these variables generally involves constrained minimization in a large parameter space, which is numerically challenging. We provide a C++ code, OPTIMASS, which interfaces with the MINUIT library to perform this constrained minimization using the Augmented Lagrangian Method. The code can be applied to arbitrarily general event topologies and thus allows the user to significantly extend the existing set of kinematic variables. We describe this code and its physics motivation, and demonstrate its use in the analysis of the fully leptonic decay of pair-produced top quarks using the $M_2$ variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.