Abstract
Earth stations are built to monitor the presence of satellites starting from satellite data, monitoring satellites, and carry out orders and corrections if needed. On the earth station there is a satellite data receiving antenna, the more elevation angle of the current satellite data receiver antenna can affect the time duration of the satellite data. The purpose of this research is to apply the Artificial Neural Network (ANN) method to design a time optimization system for satellite data at the LAPAN Pekayon earth station, East Jakarta. The data used as input is the elevation angle. The benefit of this research is expected to make it easier for operators and technicians to measure the time optimization of satellite data at earth stations. The best training results with learning rate = 0.2, error = 0.0001, max. epoch = 100000, neuron hidden layer = 15. The MSE value obtained is 0.0001 reaching the goal at epoch 68810. Regret the training / training reverse sequence reaches 0.99878. The best test result is to use learning speed 0.2 hidden layer neurons 15 comparison of training data = 54 and test data = 18. The accurate result is exactly the same as the specified error, namely 0.0001. The difference in the average target duration is 3 seconds compared to the ANN target. Artificial Neural Network (ANN) with the back propagation method of training function gradient descent (traingd), was successfully used to an optimization system for satellite data acquisition time at earth stations.
Highlights
Satelit merupakan sebuah benda di angkasa yang berputar mengikuti rotasi bumi
Earth stations are built to monitor the presence of satellites starting from satellite data
The data used as input is the elevation angle
Summary
Satelit merupakan sebuah benda di angkasa yang berputar mengikuti rotasi bumi. Satelit yang dibuat oleh manusia ditempatkan di suatu orbit tertentu menggunakan kendaraan peluncur. Sistem akuisisi data satelit di stasiun bumi menggunakan antena komunikasi satelit yang selanjutnya akan ada istilah sudut azimut dan sudut elevasi antena penerima data satelit. Penelitian oleh Pratama (2019) merancang sistem optimasi waktu dan biaya proyek pembangunan gedung Royal Sentul Park menggunakan metode time cost trade off. Jaringan saraf tiruan (Artificial Neural Network) sebagian besar telah cukup handal dalam pemecahan masalah peramalan yang sering ditemukan dalam proses pengambilan keputusan salah satunya adalah prediksi kelulusan mahasiswa dengan menggunakan metode backpropagation neural network [6]. Tujuan dari penelitian ini adalah menerapkan Jaringan Syaraf Tiruan (JST) metode backpropagation fungsi pelatihan training gradient descent (traingd) untuk merancang sistem optimasi waktu akuisisi data satelit NOAA18 di stasiun bumi. Penelitian ini dapat menjadi salah satu pilihan alternatif dalam mengetahui durasi waktu akuisisi data satelit NOAA18 di stasiun bumi LAPAN Pekayon Jakarta Timur
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.