Abstract

Milling process is one of many machining processes for manufacturing component. The length of time in the process of milling machining is influenced by selection and design of machining parameters including cutting speed, feedrate and depth of cut. The purpose of this study to know the influence of cutting speed, feedrate and depth of cut as independent variables versus operation time at CNC milling process as dependent variables. Each independent variable consists of three level of factors; low, medium and high.Time machining process is measured from operation time simulation program, feed cut length and rapid traverse length. The results of statistically from software simulation MasterCam X Milling, then do comparison to CNC Milling machine. The data from experiments was statistical analyzed by Anova and Regression methods by software minitab 16.Results show that the greater feedrate and depth of cut shorten the operation time of machinery, whereas cutting speed is not significant influence. Depth of cut has the most highly contribution with the value of 49.56%, followed by feedrate 43% and cutting speed 0.92%. Optimal time of machining process total is 71.92 minutes, with machining parameter on the condition cutting speed is 75360 mm/minutes, feedrate is 800 mm/minutes and depth of cut = 1 mm. Results of comparison time machining process in software Mastercam X milling with CNC Milling machine indicates there is difference not significant with the value of 0,35%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.