Abstract
In today's rapidly growing digital era, the role of computing in artificial intelligence is needed to be able to help business people. Both in the fields of economy, health, and education. The use of machine learning will help related parties in viewing, analyzing, and making decisions. With machine learning, all problems related to data can be solved quickly and precisely. The problem is that the thesis document will increase every year, it will become a useless document if the data processing is not carried out. Past thesis data can be used for analysis and decision-making in the next thesis era. Python is one of the most popular programming languages used for machine learning. One reason is that there are many python-based libraries. Keras is a python-based machine learning library. TensorFlow can be used when dealing with large amounts of data processing, including thesis abstract data. Thus, this study classified 140 thesis abstract documents using hard-TensorFlow with the aim that based on the abstract content it would be classified into 6 classes, namely Android Applications, Data Mining, RPL, SPK, Digital Image Processing, and Expert Systems. The results of the classification with training data as many as 82 documents with model setting batch size = 12 and epoch = 2 with an Accuracy value of 89.04%. While the test loss test data has a higher value than the Accuracy value obtained by 66.66%. By utilizing maximizing TensorFlow performance by adding a parameter that Scikit Learn has, namely Optuna. The test data was optimized with a trial value of 500, the Accuracy increased to 76.19%
Highlights
PENDAHULUANPerkembangan kecerdasan buatan di era digital seperti ini dapat kita lihat dengan jelas bagaimana tumbuh dengan pesat dan sangat dibutuhkan
Abstract−In today's rapidly growing digital era, the role of computing in artificial intelligence is needed to be able to help business people
Selanjutnya dengan menambahkan hyperparameter otomatisasi meningkat dengan nilai hasil Accuracy sebesar 76.19%
Summary
Perkembangan kecerdasan buatan di era digital seperti ini dapat kita lihat dengan jelas bagaimana tumbuh dengan pesat dan sangat dibutuhkan. Dengan melakukan klasifikasi dokumen skripsi, baik berdasarkan teks abstrak maka dapat diperoleh hasil analisis dari dokumen tersebut berdasarkan tujuannya. Beberapa klasifikasi dokumen yang telah dilakukan pada penelitian sebelumnya menyatakan bahwa Deep learning dapat bekerja dengan baik[1], [2]. Beberapa penelitian yang melakukan klasifikasi dengan Deep learning lebih banyak menggunakan data gambar[3], [4]. Sedangkan klasifikasi teks dengan memanfaatkan Deep learning sering digunakan menganalisis sentiment dengan menggunakan data short teks baik dari Bahasa Indonesia, arab dan Bahasa inggris[5]–[9]. Dari beberapa algoritma tersebut dapat memberikan hasil yang baik, akan tetapi ada beberapa penelitian sebelumnya juga melakukan. Yaitu penelitian ini akan melakukanklasifikasi dokumen abstrak sekripsi dengan menggunakan konsep Deep learning dengan memanfaatkan kerangka TensorFlow dari data teks. Selain itu optimasi hasil akurasi klasifikasi akan mencoba memanfaatkan library optuna di scikit learning pada python
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.