Abstract

Ongoing major advances in plant genotyping and phenotyping lead to a better understanding of genetic architecture of agronomical traits. In this context, it is important to develop decision support tools to help breeders in implementing marker-assisted selection (MAS) projects to assemble new allele combinations. Algorithms have been developed within an interactive graphical interface to (a) trace parental QTL alleles throughout selection generations, (b) propose strategies to select the best plants based on estimated molecular scores, and (c) efficiently intermate them depending on the expected value of their progenies. By investigating multi-allelic context and diverse pedigree structure, OptiMAS enables to assemble favorable alleles issued from diverse parents and further accelerate genetic gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.