Abstract

Uniform and nonuniform Berry–Esseen (BE) bounds of optimal orders on the rate of convergence to normality in the delta method for vector statistics are obtained. The results are applicable almost as widely as the delta method itself – except that, quite naturally, the order of the moments needed to be finite is generally $3/2$ times as large as that for the corresponding central limit theorems. Our BE bounds appear new even for the one-dimensional delta method, that is, for smooth functions of the sample mean of univariate random variables. Specific applications to Pearson’s, noncentral Student’s and Hotelling’s statistics, sphericity test statistics, a regularized canonical correlation, and maximum likelihood estimators (MLEs) are given; all these uniform and nonuniform BE bounds appear to be the first known results of these kinds, except for uniform BE bounds for MLEs. The new method allows one to obtain bounds with explicit and rather moderate-size constants. For instance, one has the uniform BE bound $3.61\mathbb{E}(Y_{1}^{6}+Z_{1}^{6})\,(1+\sigma^{-3})/\sqrt{n}$ for the Pearson sample correlation coefficient based on independent identically distributed random pairs $(Y_{1},Z_{1}),\dots,(Y_{n},Z_{n})$ with $\mathbb{E} Y_{1}=\mathbb{E}Z_{1}=\mathbb{E}Y_{1}Z_{1}=0$ and $\mathbb{E}Y_{1}^{2}=\mathbb{E}Z_{1}^{2}=1$, where $\sigma:=\sqrt{\mathbb{E}Y_{1}^{2}Z_{1}^{2}}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.