Abstract
Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this work, we introduce a new benchmark for variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the quantum dynamics of the processor to yield the best solution for a given problem. A complete assessment of scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improving it's scaling properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.