Abstract

PurposeThis paper aims to investigate the scheduling and loading problems of tow trains for mixed-model assembly lines (MMALs). An in-plant milk-run delivery model has been formulated to minimize total line-side inventory for all stations over the planning horizon by specifying the departure time, parts quantity of each delivery and the destination station.Design/methodology/approachAn immune clonal selection algorithm (ICSA) combined with neighborhood search (NS) and simulated annealing (SA) operators, which is called the NSICSA algorithm, is developed, possessing the global search ability of ICSA, the ability of SA for escaping local optimum and the deep search ability of NS to get better solutions.FindingsThe modifications have overcome the deficiency of insufficient local search and deepened the search depth of the original metaheuristic. Meanwhile, good approximate solutions are obtained in small-, medium- and large-scale instances. Furthermore, inventory peaks are in control according to computational results, proving the effectiveness of the mathematical model.Research limitations/implicationsThis study works out only if there is no breakdown of tow trains. The current work contributes to the in-plant milk-run delivery scheduling for MMALs, and it can be modified to deal with similar part feeding problems.Originality/valueThe capacity limit of line-side inventory for workstations as well as no stock-outs rules are taken into account, and the scheduling and loading problems are solved satisfactorily for the part distribution of MMALs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.