Abstract

We study the dispersion and dissipation of the numerical scheme obtained by taking a weighted averaging of the consistent (finite element) mass matrix and lumped (spectral element) mass matrix for the small wave number limit. We find and prove that for the optimum blending the resulting scheme (a) provides $2p+4$ order accuracy for pth order method (two orders more accurate compared with finite and spectral element schemes); (b) has an absolute accuracy which is $\mathcal{O}(p^{-3})$ and $\mathcal{O}(p^{-2})$ times better than that of the pure finite and spectral element schemes, respectively; (c) tends to exhibit phase lag. Moreover, we show that the optimally blended scheme can be efficiently implemented merely by replacing the usual Gaussian quadrature rule used to assemble the mass and stiffness matrices by novel nonstandard quadrature rules which are also derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.