Abstract

In this work, we study the generalized degrees- of-freedom (GDoF) of downlink and uplink cellular networks, modeled as Gaussian interfering broadcast channels (IBC) and Gaussian interfering multiple access channels (IMAC), respectively. We focus on regimes of low inter-cell interference, where single-cell transmission with power control and treating inter-cell interference as noise (mc-TIN) is GDoF optimal. Recent works have identified two relevant regimes in this context: one in which the GDoF region achieved through mc-TIN for both the IBC and IMAC is a convex polyhedron without the need for time-sharing (mc-CTIN regime), and a smaller (sub)regime where mc-TIN is GDoF optimal for both the IBC and IMAC (mc-TIN regime). In this work, we extend the mc-TIN framework to cellular scenarios where channel state information at the transmitters (CSIT) is limited to finite precision. We show that in this case, the GDoF optimality of mc-TIN extends to the entire mc-CTIN regime, where GDoF benefits due to interference alignment (IA) are lost. Our result constitutes yet another successful application of robust outer bounds based on the aligned images (AI) approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.