Abstract

In the light of the functional analysis theory we establish the optimality of the double exponential formula. The argument consists of the following three ingredients: (1) introduction of a number of spaces of functions analytic in a strip region about the real axis, each space being characterized by the decay rate of their elements (functions) in the neighborhood of the infinity; (2) proof of the (near-) optimality of the trapezoidal formula in each space introduced in (1) by showing the (near-) equality between an upper estimate for the error norm of the trapezoidal formula and a lower estimate for the minimum error norm of quadratures; (3) nonexistence theorem for the spaces, the characterizing decay rate of which is more rapid than the double exponential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.